

BAYE	THE PERSON NAMED IN	
E&P	Type Doc. Activité Cal.MT N' Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

8 juillet 2016

NOTE TECHNIQUE

JUSTIFICATION DE LA DEMANDE DES DISPOSITIONS PARTICULIERES DES CONDITIONS D'APPLICATION DU TITRE III DU DECRET 99.1046

POT DE PASSAGE 2220B - 4017 de l'Atelier R1

CARACTERISANTS E&P	
UNITE CHAINE	2220B
REPERE EQUIPEMENT	4017
BATIMENT BLOC	R1
NIVEAU	FIGURE 1
SALLE	Mad a
SECTEUR (site)	UP2-800 '
AIRE (site)	1
CODE ARTICLE	I
CMT (3 num)	120
CARA	CTERISANTS AREVA NC HAGUE
TYPE DOC	NT
AUTRE	1
GROUPE	AP
FAMILLE	
SPEC.TECH.	AP

Rév.	Rédaction	Vérification	Approbation
В	Ce document contient des ir - la protection des installatio - le secret industriel. L'ASN détient la version con	ns,	l'objectif de garantir :
			Le :08/07/2016

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

NOTE TECHNIQUE JUSTIFICATION DE LA DEMANDE DES DISPOSITIONS PARTICULIERES DES CONDITIONS D'APPLICATION DU TITRE III DU DECRET 99.1046

POT DE PASSAGE 2220B - 4017 de l'Atelier R1

	CARACTERISANTS E&P	
UNITE CHAINE	2220B	
REPERE EQUIPEMENT	4017	
BATIMENT BLOC	R1	
NIVEAU		
SALLE		
SECTEUR (site)	UP2-800	
AIRE (site)	1	
CODE ARTICLE	I	
CMT (3 num)	120	
CARA	CTERISANTS AREVA NC HAGUE	
TYPE DOC	NT	8
AUTRE	1	
GROUPE	AP	
FAMILLE		
SPEC.TECH.	AP	

Rév.	Rédaction	Vérification	Approbation
В			

E&P

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0096
 B

REF

AREVA NC

1		

REF

Page: 2/57

HISTORIQUE DES REVISIONS

Rév.	Date, N° de contrôle, Signataire et repérages des paragraphes modifiés		
Α	Approbation le : 28/02/2014 Rédacteur : Vérificateur : Approbateur :	N° de contrôle : 000	
В	Rédacteur : Vérificateur : Approbateur :		

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0096
 B

REF

AREVA NC

REF

Page: 3/57

SOMMAIRE

1	O	BJET DU DOCUMENT ET CHAMP D'APPLICATION	5
2	OI	BJET DE LA REVISION	5
3	SI	GLES ET ABREVIATIONS	€
4	D	OCUMENTS DE REFERENCE	
5	DE	ESCRIPTION DU FONCTIONNEMENT DU POT DE PASSAGE ESPN	
	5.1	PRINCIPE DE FONCTIONNEMENT	8
	5.2	CARACTERISTIQUES DE DIMENSIONNEMENT DU COMPARTIMENT PROCEDE	
	5.3	CARACTERISTIQUES DE DIMENSIONNEMENT DU COMPARTIMENT CALOPORTEUR	13
6	CA	ARACTERISTIQUES DIMENSIONNELLES	13
7	EX	(IGENCES REGLEMENTAIRES	15
	7.1	APPLICABLES LORS DE SA FABRICATION	15
	7.2	APPLICABLES A L'ESPN	
		2.1 Classement de l'équipement	15
		2.2 Inspection périodique	
		2.3 Requalification périodique	16
8	OF	BSTACLES A LA MISE EN ŒUVRE DES ACTIONS REGLEMENTAIRES	17
	8.1	ENVIRONNEMENT DE L'ESPN	
	8.2	ÀCCESSIBILITE A L'EQUIPEMENT	
	8.3	EXAMEN VISUEL	
	8.4	MISE EN PRESSION (EPREUVE HYDRAULIQUE)	19
		4.1 Compartiment nucléaire	
		4.2 Compartiment sous pression	
	8.5	PERIMETRE DE LA DEMANDE DE DISPOSITIONS PARTICULIERES	
9		STIMATION DE LA PROBABILITE DE LA DEFAILLANCE	
	9.1	DETERMINATION DU FACTEUR FABRICATION	2(2(
		1.2 Matériau	21
		1.4 Note de calcul statique de conception	21
	_	1.5 Justification d'une épaisseur minimale	21
		1.6 Niveau du facteur de fabrication de l'équipement	
	9.2		27 25
		2.1 Modes de dégradation	26
		2.2 Examen visuel	
		2.3 Mesures d'épaisseur	26
		9.2,3.1 Estimation de l'évolution de la corrosion	
		9.2.3.1.1 Démarche	
		9.2.3.1.2 Epaisseur de conception	28
		9.2.3.1.3 Vitesse de perte d'épaisseur	28
		9.2.3.1.4 Détermination d'une durée de vie de fonctionnement (DMF) réduite par rapport à la perte d'épaisseur	35
		9.2.3.1.5 Estimation de la périodicité des campagnes de mesures d'épaisseur	35
		2.4 Suivi de l'historique de fonctionnement	36
		9.2.4.1 Suivi des températures de fonctionnement du pot de passage	30
		9.2.4.2 Suivi de l'acidité dans le pot de passage	
		9.2.4.3 Sulvi des cycles en laugue du pot passage	
	9.3	DETERMINATION DU FACTEUR DEGRADATION	
		3.1 Sensibilité de l'équipement face aux dégradations potentielles	

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0096
 B

REF

AREVA NC

Page	:4/5/
9.3.2 Corrosion	43
9.3.2.1 Détermination de la probabilité d'apparition de la dégradation	43
9.3.2.1.1 Données expérimentales	
9.3.2.1.2 Retour d'expérience des inspections sur équipements similaires	44
9.3.2.1.3 Probabilité d'apparition de la dégradation de type corrosion	
9.3.2.2 Détermination de la maîtrise des conditions d'exploitation	46
9.3.2.3 Détermination de l'adéquation des inspections aux dégradations	47
9.3.2.4 Niveau du facteur de dégradation	47
9.3.3 Fatigue	48
9.3.3.1 Détermination de la probabilité d'apparition de la dégradation	48
9.3.3.2 Détermination de la maîtrise des conditions d'exploitation	48
9.3.3.3 Détermination de l'adéquation des inspections aux dégradations	49
9.3.3.3.1 Adéquation des inspections liées à la fatigue	49
9.3.3.4 Niveau du facteur de dégradation	49
9.3.4 Facteur Global de dégradation de sécurité de l'équipement	50
9.4 DETERMINATION DU NIVEAU DE SECURITE DE L'ESPN	50
10 EVALUATION DES CONSEQUENCES DE LA DEFAILLANCE DE L'ESPN	51
10.1 RETOUR D'EXPERIENCE (REX)	51
10.2 RAPPEL DES CARACTERISTIQUES DE L'ESPN	51
10.3 CONSEQUENCES SUR LE PERSONNEL	52
10.4 CONSEQUENCES SUR L'ENVIRONNEMENT	53
11 PERIMETRE DE LA DEMANDE D'AMENAGEMENT D'APPLICATION DU TITRE III POUR LE SUIV	٧I
THE PERMANENT OF THE PE	5.4

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 5 / 57

1 OBJET DU DOCUMENT ET CHAMP D'APPLICATION

Les Equipements Sous Pression Nucléaires (ESPN) sont soumis aux dispositions de suivi en service du Titre III du décret [1] relatif aux Equipements Sous Pression. Ces dispositions sont précisées dans l'arrêté [2] dans son titre III et dans ses annexes 5 et 6.

De ce fait, le pot de passage 2220B-4017 de préchauffage de la solution d'attaque de l'Atelier R1 est soumis à ces dispositions réglementaires de suivi en service.

L'accessibilité à l'ESPN étant difficile du fait de son implantation et de l'ambiance radiologique, la totalité des gestes réglementaires n'est pas réalisable sur cet ESPN. Il doit ainsi faire l'objet d'une demande de décision individuelle d'octroi de dispositions particulières de suivi en service en absence de dérogation existante conformément au guide [3].

Le présent document, à l'appui de notre demande, comprend :

- la description de l'équipement et les justifications pour solliciter des modalités particulières de suivi en service,
- l'analyse des différents facteurs impactant la probabilité de défaillance de l'équipement et notamment l'analyse des données disponibles concernant sa fabrication, son état et sa sensibilité aux dégradations,
- la démonstration que les mesures compensatoires envisagées en remplacement de tout ou en partie de certaines actions réglementaires, permettent de garantir que le niveau de sécurité de l'équipement sera au moins équivalent à celui qui serait établi par la réalisation complète des exigences réglementaires,
- la présentation d'informations relatives aux conséquences potentielles de la défaillance,
- le périmètre de la demande d'aménagement d'application du titre III du décret 99.1046.

2 OBJET DE LA REVISION

L'objet de cette révision est la prise en compte des demandes complémentaires formulées :

- dans le courrier [4],
- par l'ASN dans le cadre des VdS et des échanges sur l'envoi des CPAT3 4120-21 et 23 de l'atelier T2 en octobre 2015.
- par l'ASN ainsi que des réponses apportées par AREVA NC Etablissement de la Hague dans le courrier 2016-23773 et dans le courrier 2016-32582.

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 6 / 57

3 SIGLES ET ABREVIATIONS

DEX Dossier d'exploitation DMF Durée minimale de fonctionnement **ESPN** Equipements sous pression nucléaire Installation nucléaire de base INB Organisme Indépendant Habilité et Accepté OIHA **POES** Programme d'opération, d'entretien et de surveillance PS Pression Maximale Admissible **RPS** Rapport provisoire de sûreté VA Vapeur d'eau ZIS Zone(s) identifiée(s) la(les) plus sensible(s)

4 DOCUMENTS DE REFERENCE

- [1] Décret 99.1046 du 13 décembre 1999 relatif aux Equipements Sous Pression
- [2] Arrêté du 12 décembre 2005 relatif aux Equipements Sous Pression Nucléaires
- [3] CODEP DEP 2013 034129 : Conditions particulières d'application du Titre III du décret 99 1046 aux Equipements Sous Pression Nucléaire
- [4] CODEP DEP 2014 017304 : Rejet des demandes de conditions particulières d'application du titre III du décret du 13 décembre 1999 aux équipements sous pression nucléaires
- [5] 2014-37499 : Justification du classement du pot de passage 2220B-4017 de l'atelier R1 en « ESPN de Niveau 2 » selon l'arrêté du 12 décembre 2005
- [6] Décret du 2 avril 1926 portant règlement sur les appareils à vapeur autres que ceux placés à bord des bateaux
- [7] Arrêté du 15 Mars 2000 relatif à l'exploitation des équipements sous pression
- [8] Arrêté du 21 décembre 1999 relatif à la classification et à l'évaluation de conformité des équipements sous pression
- [9] Fiche COLEN n°24 : Vérification intérieure des équipements

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 7 / 57

- [10] CODEP DEP 2013 066339 : Transmission de dossiers de demandes d'octroi de conditions particulières d'application du titre III du décret 99.1046 à des équipements sous pression nucléaires
- [11] 2013-36575 : Dossier Descriptif du pot de passage 2220B-4017 de l'atelier R1
- [12] NT 1301 12 0140 A : CALCUL DES POTS ET DE LEUR CHARPENTE SOUS PRESSION INTERNE ET SOUS SEISME
- [13] NT 100807 12 0248 A : Note de calcul statique et fatigue des pots de passage 2220-4012 et 4017 des ateliers R1/T1
- [14] 2014-35989 : Programme d'Opération d'Entretien et de Surveillance (POES) Pot de passage 2220-4017B Atelier R1
- [15] Courrier COR ARV 3SE INS 13-003: Guide inter-exploitant des conditions particulières d'application du Titre III du décret 99.1046 aux équipements relevant des annexes 5 et 6 de l'arrêté du 12 décembre 2005
- [16] NT 100807 00 0104 A: NOTE TECHNIQUE Comptage des cycles de fatigue du Pot 2220B-4017 Atelier R1
- [17] 2016-22786: PROJET ESPN RAPPORT CONTROLE VISUEL DU POT 2220B-4017 DE L'ATELIER R1
- [18] 2014-36993 : Principes de détermination de la durée de vie des équipements ESPN
- [19] 2016-35740 FICHE DE CONTROLE TEST EN PRESSION ESPN ATELIER R1 UNITE 2220B 4017 ANNEE 2016
- [20] 1994-157: Note de fonctionnement R1 Unité 2001- Réactifs actifs et inactifs
- [21] 2015-72491: (DCF 100210 20 015 051 A) EXAMEN CONFORMITE VIEILLISSEMENT PRESTATIONS DE MESURES D'EPAISSEUR PAR ULTRASONS SUR EQUIPEMENT -
- [22] 2014-15014 : Justification de la demande des dispositions particulières des conditions d'application du titre III du décret 99.1046 Dissolveur rotatif 2220B-10 de l'atelier R1
- [23] DER 1301 12 068 206 Rév A: Procès-verbal d'épreuve hydraulique relatif au pot 2220-4017 BS
- [24] 1994-199: Note de fonctionnement dissolution unité 2220 R1

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 8 / 57

[25] 2016- 11685 : JUSTIFICATION DE LA DEMANDE DES DISPOSITIONS PARTICULIERES DES CONDITIONS D'APPLICATION DU TITRE III DU DECRET 99.1046 -POT DE PRECHAUFFAGE 2220B-4012 DE L'ATELIER T1

5 DESCRIPTION DU FONCTIONNEMENT DU POT DE PASSAGE ESPN

5.1 PRINCIPE DE FONCTIONNEMENT

Le principe de fonctionnement et les caractéristiques des flux traités dans le pot de passage sont présentés dans l'Analyse de Sûreté de justification de classement en niveau de l'ESPN [5].

Le pot de passage est constitué de deux compartiments indissociables (Figure 1) :

- un compartiment procédé en dépression contenant la solution de dissolution dont l'activité est supérieure à 370 GBq,
- un compartiment sous pression d'un volume de double-enveloppe de chauffe) soudé extérieurement sur le fond de la cuve du pot de passage et contenant le fluide caloporteur (VA) sans activité radiologique.

Pour rappel et à titre indicatif le pot de passage est à ce jour un EIP de rang 3.

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 9/57

Pot de passage 2220B-4017 atelier R1

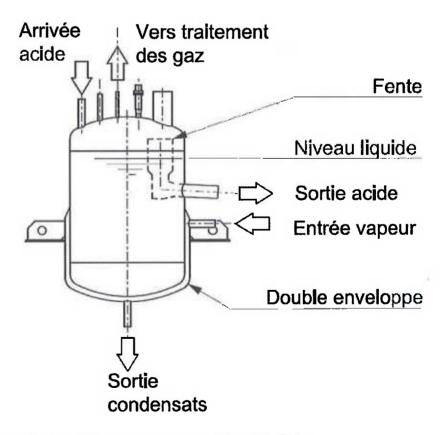


Figure 1 – Schéma descriptif du pot de passage 2220B-4017 de l'atelier R1

Type Doc. Activité Cat.MT N° Ordre Révision

NT 100807 12 0096 B

REF

REF

AREVA NC

Page: 10 / 57

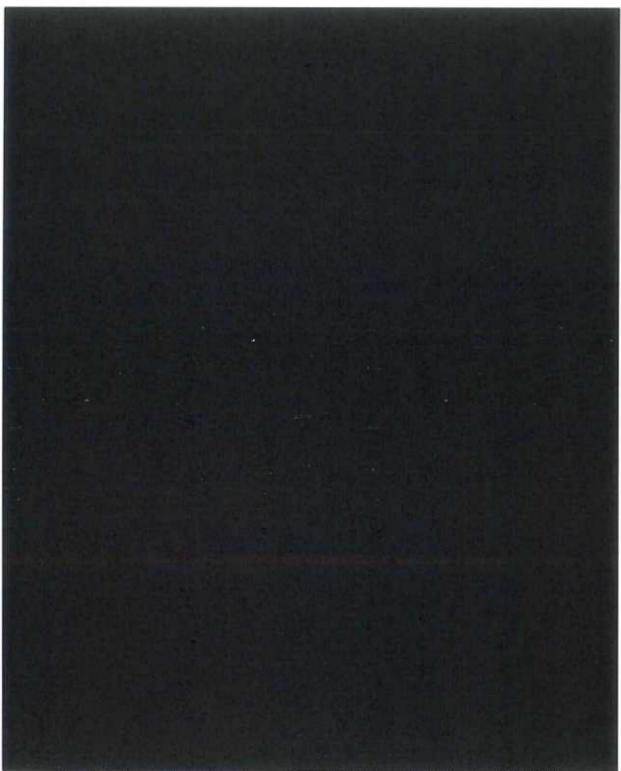


Figure 2 - Schema de principe du pot de passage 22208-4017 et de son circuit caloporteur (Inité 22646)

E&P Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B

Page: 11 / 57

	· ago · · · · o ·
Le pot de passage 2220B-4017 est alime et le pot de passage dissolution est préparée dans la cuve récupéré depuis la cuve réactif (Figure 4).	
La cuve d'acide recombiné par la pompe	est alimentée par la depuis la cuve [20] (Figure 5).
Figure 3 – Schéma procédé entre le pot de pas	ssage 2220B-4017 et la cuve de préparation

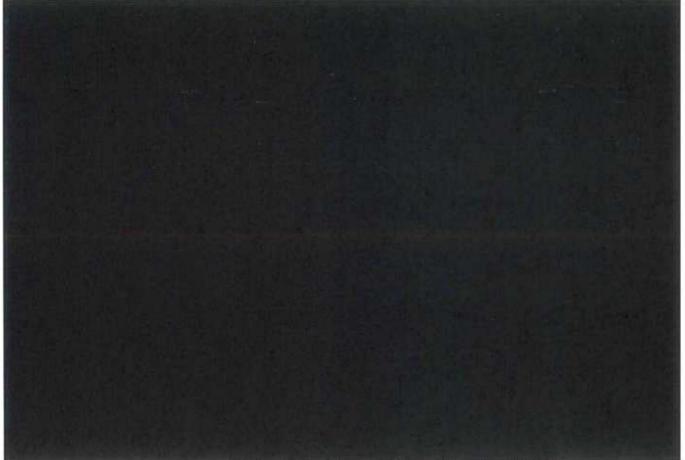


Figure 4 - Schéma de fonctionnement - Réactifs actifs unité 2001

Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 В

REF

AREVA NC

REE

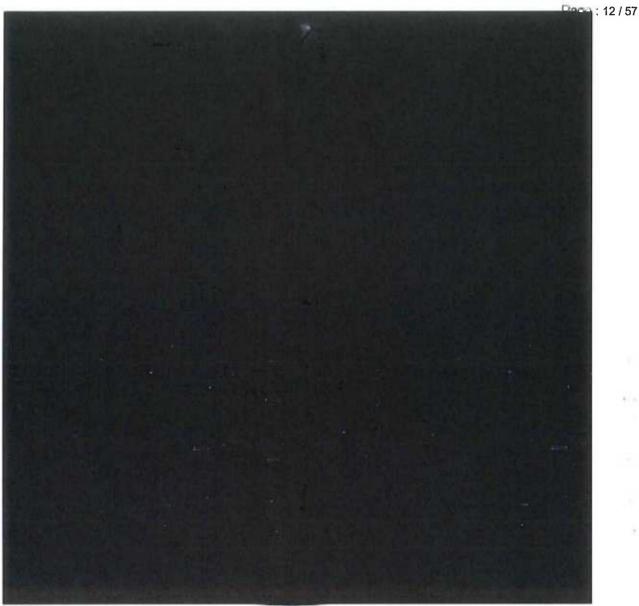


Figure 5 – Schéma de principe unité 4140 de l'atelier R2 entre la cuve et la cuve

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0096
 B

REF

AREVA NC REF

Page: 13 / 57

5.2 CARACTERISTIQUES DE DIMENSIONNEMENT DU COMPARTIMENT PROCEDE

Données	Unité(s)	Compartiment procédé		
Fluide				
Pression mini - maxi de service	bar relatif			
Température Normale de service	°C	90		
Volume au trop plein du procédé	L			

5.3 CARACTERISTIQUES DE DIMENSIONNEMENT DU COMPARTIMENT CALOPORTEUR

Données	Unité(s)	Compartiment caloporteur			
Fluide		VA 6,6			
Pression Maximale Admissible (PS)	bar relatif				
Température Maximale Admissible	°C	165			
Volume double enveloppe	L	- H-			

6 CARACTERISTIQUES DIMENSIONNELLES

Les principales caractéristiques du pot de passage 2220B-4017 sont les suivantes :

- hauteur extérieure de la cuve :

- hauteur totale extérieure :

diamètre extérieur cuve :

- diamètre extérieur double enveloppe :

,

Le matériau constitutif du pot de passage 2220B-4017 est le

Les épaisseurs nominales de fabrication des différents composants pour le pot de passage 2220B-4017 de R1 sont (Figure 6) :

virole : (Rouge),

- fond torisphérique supérieur : (Vert),

- fond torisphérique inférieur : [Bleu],

- double-enveloppe : [(Jaune).

 Type Doc.
 Activité
 Cat.MT
 N* Ordre
 Révision

 NT
 100807
 12
 0096
 B

REF

REL

AREVA NC

Page: 14 / 57

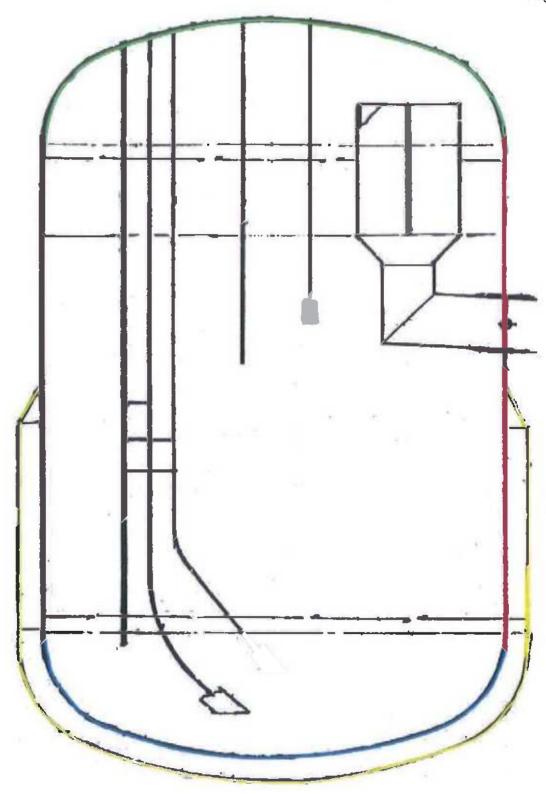


Figure 6 – Epaisseurs nominales de fabrication des tôles du pot de passage

E&P	Type Doc	c. Activité 100807	N° Ordre 0096	Révision B	REF
AREVA NC					REF

Page: 15 / 57

7 EXIGENCES REGLEMENTAIRES

7.1 APPLICABLES LORS DE SA FABRICATION

L'équipement bien que non soumis au décret du 2 avril 1926 [6] « portant règlement sur les appareils à vapeur autres que ceux placés à bord des bateaux » du fait que ne sont soumis que les appareils à pression vapeur ou eau surchauffée d'un volume supérieur à a respecté les exigences de ce décret tant pour sa conception, sa fabrication et pour sa mise en service.

Le pot de passage 2220B-4017 a été conçu, fabriqué (épreuve initiale le 22/06/90 selon [23]) et mis en service en Mai 1994 avant l'évolution réglementaire de 1999 / 2000 (Décret 99.1046 du 13 décembre 1999 [1], Arrêté du 21 décembre 1999 [8] et Arrêté du 15/03/2000 [7]).

7.2 APPLICABLES A L'ESPN

7.2.1 Classement de l'équipement

Le pot de passage 2220B-4017 de l'atelier R1 relève du classement N2 et de catégorie II selon les exigences des arrêtés du 12 décembre 2005 [2] et du 21 décembre 1999 [8].

Le fluide caloporteur (VA) appartient aux fluides de Groupe 2. Cependant, d'après l'article 4 de l'arrêté [2], si l'équipement est de niveau N1 ou N2, et c'est le cas pour le pot de passage 2220B-4017 de R1, les critères de classement des fluides de groupe 1 sont à appliquer même si le fluide est de groupe 2.

D'après les annexes 5 et 6 de l'arrêté ESPN [2], si l'équipement est un récipient de catégorie I à IV et de niveau N1 ou de catégorie II à IV et de niveau N2 ou N3 contenant un fluide autre qu'un liquide dont la pression de vapeur, à la température maximale admissible, est inférieure ou égale à 0,5 bar au-dessus de la pression atmosphérique normale alors cet équipement est soumis à l'inspection périodique et à la requalification périodique.

Le pot de passage 2220B-4017 de l'atelier R1 est un équipement de niveau N2 et de catégorie II, alors il est soumis à l'inspection périodique et à la requalification périodique.

7.2.2 Inspection périodique

En application de l'annexe 5 de l'arrêté ESPN [2], l'inspection périodique doit comprendre une vérification extérieure et intérieure de l'équipement ainsi qu'une vérification extérieure des accessoires de sécurité installés sur l'équipement.

D'après l'annexe 5 de l'arrêté ESPN [2], la vérification extérieure et intérieure de l'équipement porte sur toutes les parties visibles après exécution de toutes les mises à nu et démontage de tous les éléments amovibles.

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 16 / 57

De ce fait, comme l'explique l'annexe 3 du courrier [3], si, par conception, il n'existe aucune partie visible après exécution de toutes les mises à nu et démontage de tous les éléments amovibles, la vérification visuelle porte donc sur un ensemble de parties vides.

Le pot de passage 2220B-4017 de l'atelier R1 est entièrement soudé par conception et n'a pas d'orifice de visite, ainsi la vérification visuelle intérieure porte sur un ensemble de parties vides.

La fiche COLEN n°24 [9] précise tout de même que « pour un équipement qui, par conception, ne présenterait aucune partie interne visible après exécution de toutes les mises à nu et démontage de tous les éléments amovibles, l'absence de vérification intérieure doit être prise en compte :

- par l'exploitant qui définira dans le programme des opérations d'entretien et de surveillance les modalités de contrôles adaptés aux modes de dégradation redoutés,
- par l'organisme indépendant habilité et accepté qui réalise ou fait réaliser lors de la requalification périodique de l'équipement tout examen ou essai complémentaire jugé utile. »

En application de l'annexe 5 de l'arrêté ESPN [2], l'intervalle entre deux inspections périodiques ne peut dépasser 40 mois.

7,2,3 Requalification périodique

En application de l'annexe 6 de l'arrêté ESPN [2], la requalification périodique d'un équipement comprend les opérations suivantes :

- une inspection de requalification périodique,
- une épreuve hydraulique (ou une épreuve de résistance),
- la vérification des accessoires de sécurité qui le protègent.

L'inspection de requalification périodique comprend :

- une vérification intérieure et une vérification extérieure de l'équipement, y compris des assemblages permanents réalisés sur l'équipement et des accessoires sous pression installés sur l'équipement,
- une vérification de l'existence et de l'adéquation du dossier descriptif, de la notice d'instructions et du dossier d'exploitation,
- tout examen ou essai complémentaire jugé utile par l'organisme ou le service d'inspection reconnu.

Elle porte sur toutes les parties visibles après exécution de toutes les mises à nu et démontage de tous les éléments amovibles.

L'épreuve est réalisée au vu des résultats favorables de l'inspection. Elle consiste à maintenir l'équipement à une pression égale à 120 % de la pression maximale admissible PS.

Dans le cas d'un équipement multi-compartimenté, l'épreuve hydraulique s'applique à tous les compartiments dont la PS est supérieure à 0,5 bar relatif. Aucune épreuve hydraulique n'est à prévoir sur un compartiment qui ne peut fonctionner qu'en dessous de 0,5 bar relatif. Ainsi, si un compartiment ne peut fonctionner qu'en dessous de 0,5 bar relatif comme c'est le cas du compartiment nucléaire du pot de passage 2220B-4017 de R1 (voir § 5.2), aucune épreuve hydraulique n'est à réaliser.

E&P	Type Doc. Activité Cat.MT NT 100807 12	N° Ordre Révision	REF
AREVA NC			REF

Page: 17 / 57

En effet, il est précisé dans l'annexe 1 du courrier [10] « la mise en pression du compartiment nucléaire en dépression n'est pas une exigence réglementaire ».

En application de l'annexe 6 de l'arrêté ESPN [2], le pot de passage 2220B-4017 de l'atelier R1 est un récipient sur lequel les critères de classement des fluides de groupe 1 sont à appliquer, l'intervalle entre deux requalifications périodiques ne peut donc dépasser 5 ans (soit 60 mois).

8 OBSTACLES A LA MISE EN ŒUVRE DES ACTIONS REGLEMENTAIRES

8.1 ENVIRONNEMENT DE L'ESPN

Le pot de passage 2220B-4017 est situé dans une cellule en zone inaccessible au personnel en dépression par rapport aux locaux adjacents accessibles et par rapport à la pression atmosphérique au moyen du réseau de ventilation bâtiment.

La cellule d'implantation du pot de passage est une cellule mécanique classée zone 4 (zone rouge). La cellule est donc communicante avec la salle de maintenance (zone rouge) grâce au plancher amovible mais les deux salles sont inaccessibles au personnel.

L'épaisseur des murs en béton armé de la cellule set de :

- voile Ouest :

voile Nord : de

voile Sud :

voile Est :

8.2 ACCESSIBILITE A L'EQUIPEMENT

L'équipement est situé dans une cellule mécanique. En conformité avec nos standards de conception, des ponts de maintenance, un toboggan, des télémanipulateurs et des hublots existent sur le voile entre la cellule et la zone 2 adjacente.

L'implantation du pot de passage 2220B-4017 de l'atelier R1 zone inaccessible (débit de dose non compatible avec accès personnel) rend les inspections réglementaires aux contacts impossibles.

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 18 / 57

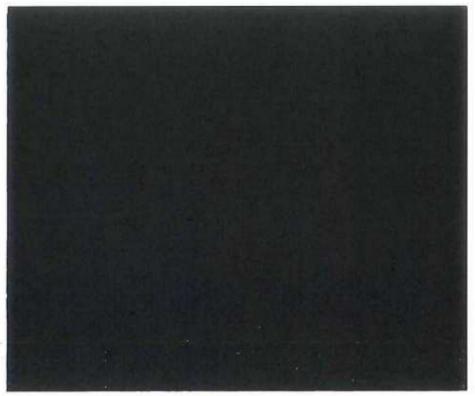


Figure 7 - Positionnement des pots 2220B-4012/4017 dans la cellule

La position de l'équipement ne nous permet pas d'accéder au contact avec les moyens actuels.

8.3 EXAMEN VISUEL

Le pot de passage est un équipement sous pression nucléaire à multi compartiments :

- compartiment sous pression : entièrement soudé pour éviter les risques de fuite en Zone 4 et ne disposent pas de parties démontables permettant d'effectuer les inspections visuelles internes,
- compartiment nucléaire : constitué d'une cuve entièrement soudée.

L'examen visuel interne du compartiment sous pression et du compartiment nucléaire est impossible puisque ces compartiments sont entièrement soudés. La performance intrinsèque pour la vérification visuelle intérieure de ces compartiments est donc égale à 0.

L'examen externe des parois de l'équipement est possible mais limité pour tous les compartiments compte tenu de l'implantation de l'équipement en zone 4 et des possibilités d'introduction de moyens de vision à distance. La performance intrinsèque pour la vérification visuelle extérieure dépend de la surface qui peut être inspectée.

Pour la double-enveloppe VA et pour le compartiment nucléaire, la surface extérieure inspectable est comprise entre la performance intrinsèque de la vérification visuelle extérieure vis-à-vis de la détection de fissuration externe et de perte d'épaisseur externe est donc égale à 2.

E&P	Type Doc.	Activité 00807	N° Ordre	Révision B	REF
AREVA NC					무든도

Page: 19 / 57

Le compte rendu de l'inspection réalisé sur site, en présence d'un organisme mandaté par l'ASN en mars 2016 est consultable dans la note [17].

8.4 MISE EN PRESSION (EPREUVE HYDRAULIQUE)

8.4.1 Compartiment nucléaire

Dans le cas d'un équipement multi-compartimenté tel que le pot de passage 2220B-4017 de l'atelier R1, le compartiment nucléaire est en dépression en fonctionnement normal, ainsi aucune épreuve hydraulique n'est réalisée sur le compartiment nucléaire. La performance intrinsèque du geste réglementaire d'épreuve hydraulique sur le compartiment nucléaire est égale à 0 puisque le compartiment ne peut fonctionner qu'en-dessous de 0,5 bar relatif (cf. §5.2).

8.4.2 Compartiment sous pression

Le test en pression du compartiment caloporteur a été réalisé en mars 2016 [19].

8.5 PERIMETRE DE LA DEMANDE DE DISPOSITIONS PARTICULIERES

Les vérifications partielles extérieure et intérieure de l'équipement compte tenu des éléments suivants :

- l'implantation dans une cellule de zone 4 dont l'ouverture induit une exposition élevée des intervenants (ambiance radiologique),
- le nombre limité d'outils permettant la manipulation de matériel.

motivent la demande d'aménagement pour l'application des dispositions particulières de suivi en service de cet équipement.

9 ESTIMATION DE LA PROBABILITE DE LA DEFAILLANCE

Conformément à la méthode d'élaboration d'un dossier de demande de conditions particulières d'application du titre III du décret du 13 décembre 1999 [1] aux ESPN [3], l'analyse du niveau de sécurité de l'équipement doit être réalisée de manière itérative, en partant de la situation réelle de l'équipement, puis, si besoin, en intégrant les mesures complémentaires à mettre en œuvre au fur et à mesure de l'analyse et de la connaissance de l'équipement.

Les facteurs à considérer pour l'estimation de ce niveau de sécurité sont définis dans [3] :

- Facteur Fabrication,
- Facteur Etat.
- Facteur Dégradation.

AREVA

NC

Type Doc. Activité Cat.MT N° Ordre Révision

NT 100807 12 0096 B

REF

REF

Page: 20 / 57

9.1 DETERMINATION DU FACTEUR FABRICATION

« Le facteur fabrication concerne tous les éléments qui permettent d'évaluer le niveau de qualité de fabrication de l'équipement et le niveau de confiance que l'on peut attribuer à cette qualité. Il est basé sur un dossier de fin de fabrication et l'état descriptif de l'équipement.

Ces éléments peuvent être complétés par des expertises de l'équipement incluant des contrôles directement sur l'équipement, des reprises de calculs,....

Les niveaux de probabilité sont définis comme suit :

- Niveau 1 : Equipement conforme à un code de construction ou à une norme harmonisée et dont le dossier de fabrication est complet,
- Niveau 2: Equipement conforme aux règles de l'art ou équipement dont les éléments pertinents du dossier de fabrication ont été reconstitués par l'exploitant sur la base de données du fabricant, quel que soit le référentiel de construction (code, norme, règles de l'art,...),
- Niveau 3 : Absence de dossier de fabrication de l'équipement ».

9.1.1 Dossier descriptif

L'équipement a été conçu conformément au référentiel réglementaire et normatif de l'époque et par rapport aux standards de conception, il dispose d'un dossier descriptif complet [11].

Le Dossier Descriptif de l'équipement [11] est conforme à la réglementation de l'époque et conforme à la réglementation actuelle au travers de son contenu :

- o notes de calcul,
- plan d'ensemble,
- plan de détails,
- procédures et qualification (LOFC, cahier de soudage, qualifications des modes opératoires de soudage, qualification des soudeurs, procédure de contrôle radiographique, procédure de contrôle par ressuage, procédure de contrôle de microduretés superficielles HV, procédure de traitement thermique, procédure d'épreuve hydraulique,...),
- o documents de contrôles et épreuves (contrôle des approvisionnements, certificats matière, PV de contrôle visuel des soudures et ressuage, PV de vérification de l'état des lieux, plans de repérage des radiogrammes, PV de contrôle par ultrasons,...),
- o documents essais et recette (PV contrôle visuel et aspect, PV d'épreuves, PV de contrôle dimensionnel, PV de contrôle d'épaisseurs par ultrasons, Identification matière,...).

9.1.2 Matériau

Le matériau utilisé pour la fabrication est :

 E&P
 Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B
 REF

Page: 21/57

Concernant les soudures, un soudage homogène avec du d'apport a été effectué.

comme métal

Un suivi rigoureux de la qualité des demi-produits a été réalisé tout au long du processus d'approvisionnement lors de la fabrication du pot de passage 2220B-4017 de l'atelier R1.

L'ensemble des exigences de qualité d'élaboration du a été pris en compte par l'intermédiaire de la définition de critères de qualité et de contrôles, pour l'approvisionnement matière concernant la qualité des tôles, des tubes sans soudures, des barres, pièces forgées et métal d'apport utilisés dans la construction des pot de passages.

9.1.3 Présentation du dossier de calcul

Il est principalement composé des documents suivants (par ordre chronologique);

- Calcul statique : NT 1301 12 0140 A (Réf. [12]) datée du 29/05/1990
- Calcul statique et fatigue : NT 100807 12 0248 A (Réf. [13]) de février 2016.

9.1.4 Note de calcul statique de conception

Lors de la conception du pot R1-2220B-4017, une note de calcul statique a été réalisée :

Note de calcul statique du pot de passage 2220B-4017 de l'atelier R1 [12].

L'équipement est dimensionné avec les éléments suivants :

- Les Codes de calcul utilisés :
- Les conditions de calcul :
 - Chargement:

Le chargement est celui d'une pression de dans la double enveloppe, correspondant à la pression maximale de service.

La pression hydrostatique due au liquide ayant un effet favorable (effets opposés à la pression interne), n'est pas prise en compte.

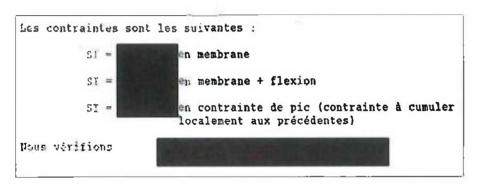
Le poids propre est négligé.

La température de calcul, la température maximale en fonctionnement normal soit

<u>Rappel</u>: Conformément au fonctionnement de l'équipement (pression de tarage des soupapes) la PS du compartiment vapeur est de 6,6 bars.

E&P	Type Doc. Activité NT 10086	Cat.MT N° Ordr	REF
AREVA NC			REE

Page: 22 / 57


· Le matériau :

Caractéristiques des éléments du pot :

• Résultats du calcul statique:

Ci-dessous les valeurs en contrainte du dimensionnement de la zone la plus sollicitée (située dans l'angle de raccord de la double enveloppe externe) et les admissibles associés :

Les calculs effectués dans cette note permettent de justifier le pot 2220-4017 de R1B au niveau A de sécurité suffisamment importante pour justifier d'un dimensionnement avec une pression maximale admissible de 6,6 bars.

Tolérance de fabrication et surépaisseur de corrosion:

Il n'a pas été retenu de surépaisseur de corrosion à la conception, et le calcul a été réalisé avec les épaisseurs nominales.

9.1.5 Justification d'une épaisseur minimale

Dans le but de justifier du bon dimensionnement de l'équipement avec prise en compte d'une épaisseur consommable, une nouvelle note de calcul a été réalisée :

E&P	Activité 100807		Révision B	REF
AREVA NC				REF

Page: 23 / 57

Calcul statique et fatigue : [13]

- Les calculs sont réalisés suivant l'ASME conformément à la NT d'origine [12]
 - Les conditions du calcul sont les suivantes :

	Corps
Fluide	Vapeur
Densité de service	
Pression de calcul	- V.
Température de calcul	

• Résultats du calcul :

La tenue en pression du pot de 2220B-4017 est validée en tenant compte d'une épaisseur consommable de

La valeur de la contrainte maximale se situe au niveau de la jonction de la double enveloppe.

- Membrane : σ_m =
- Flexion : σ_f =
- Membrane + Flexion : σ_{m+f} =
- Pointe : σ_P =
- Totale : σ_{tot} =
- Vérification des critères de dimensionnement

Les critères de est donc respecté.

•
$$\sigma_m$$
 +

Le critère de dimensionnement au fluage à froid est donc respecté.

Nous vérifions également le flambage du fond sous pression externe d'après

Type Doc. Activité Cat.MT N° Ordre Révision

NT 100807 12 0096 B

REF

AREVA NC

REF

Page: 24 / 57

$$P_{\scriptscriptstyle \parallel} = \frac{B}{(R/T)}$$

 $P_a = B/(R/t)$

Le flambage du fond inférieur est donc respecté. La pression maximale admissible pour une épaisseur consommable de

Vérification du dommage de fatigue:

La vérification des dommages de type S n'est pas nécessaire car les dilatations des fonds et des viroles sont libres. Aucune contrainte thermique n'est donc générée par la dilatation thermique, et de ce fait, pas de phénomène de fatigue thermomécanique n'est à craindre pour l'équipement.

Par ailleurs, le nombre de cycles pour une variation totale de pression est estimé à Le phénomène de fissuration par fatigue n'est donc pas à craindre pour l'équipement.

9.1.6 Niveau du facteur de fabrication de l'équipement

Compte tenu de la conformité du dimensionnement à un code de construction et des documents du dossier descriptif [11] (documents de procédures et qualifications, documents de contrôles et épreuves, documents essais et recettes), le niveau du facteur de fabrication de l'équipement est un facteur de **Niveau 1**.

E&P	Type Doc. Activité Cal.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 25 / 57

9.2 DETERMINATION DU FACTEUR ETAT

« Ce facteur évalue l'état de l'équipement par rapport à des dégradations avérées. Il est basé sur l'état réel de l'ESPN à ce jour, et doit prendre en compte les incertitudes liées à la caractérisation de cet état.

Le niveau de ce facteur, pour un équipement présentant des dégradations, est à définir en fonction de la caractérisation de ces dégradations et de l'estimation de leur évolution en service au regard des marges de sécurité définies à la conception de l'équipement.

Les niveaux de probabilité sont définis comme suit :

Niveau 1:

- Equipement ne présentant aucune dégradation ou,
- Equipement présentant des dégradations pour lesquelles l'exploitant peut garantir de façon certaine que leur évolution en service, estimée de façon conservative, permet de maintenir les marges de sécurité du même ordre de grandeur que celles présentes à la conception ou,
- Equipement sensible à des modes de dégradation ou de vieillissement dont l'exploitant peut justifier qu'ils ont été spécifiquement pris en compte à la conception (dimensionnement avec des propriétés estimées en fin de vie, surépaisseur de corrosion,...) et de garantir que leurs évolutions en service, estimées de façon conservative, restent couvertes par les hypothèses considérées à la conception.
- Niveau 2: Equipement ne se situant pas dans le cas précédent, présentant des dégradations pour lesquelles l'exploitant considère que leur évolution en service, estimée de façon conservative, conférera à l'équipement, à la fin de sa durée de fonctionnement prévue, une résistance du même ordre de grandeur que la résistance minimale définie à la conception, dans le respect des marges de sécurité.
- Niveau 3 : Equipement présentant des dégradations pour lesquelles l'exploitant ne peut garantir que leur évolution en service, estimée de façon conservative, conférera à l'équipement une résistance au moins égale à la résistance minimale définie à la conception, dans le respect des marges de sécurité, à la fin de sa durée de fonctionnement prévue. ».

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 26 / 57

9.2.1 Modes de dégradation

Les modes de dégradation potentiels (cf. § 9.3.1), au vu des conditions d'exploitation, sont la corrosion par dissolution uniforme et généralisée du fait du contact de la paroi avec une solution d'acide nitrique chaude et la fatigue-fluage du fait de cycles en température et en pression suivant les différentes phases de fonctionnement de l'équipement. Les phénomènes de dégradation potentiels sont donc la perte d'épaisseur et la fissuration par fatigue au-delà d'un certain nombre de cycles de fonctionnement.

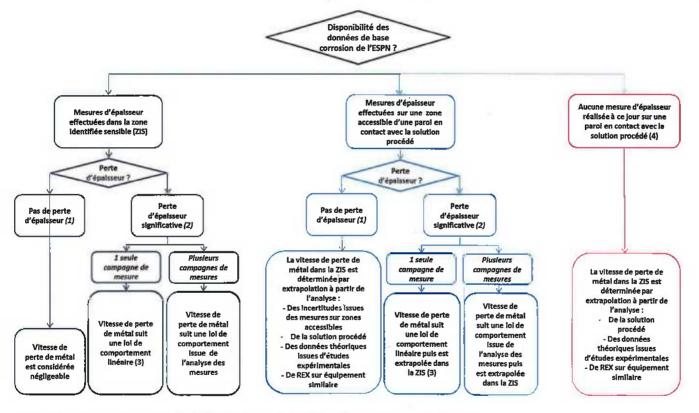
9.2.2 Examen visuel

Au regard des contraintes d'accessibilité et des méthodes d'investigation disponibles, l'observation des surfaces est partielle comme précisé au § 8.3.

Le résultat de cet examen visuel est décrit dans le document [17]. Aucune anomalie particulière n'a été décelée.

9.2.3 Mesures d'épaisseur

Au regard des contraintes d'accessibilité et des méthodes d'investigation disponibles, des mesures d'épaisseurs sur l'équipement ne sont pas réalisables à ce jour.


9.2.3.1 Estimation de l'évolution de la corrosion

9.2.3.1.1 Démarche

Les principes de détermination de la durée de fonctionnement des équipements sont précisés dans le document [18]. Ils sont synthétisés dans la figure 8 suivante. Le cas de cet équipement est encadré en rouge.

Page: 27 / 57

- (1) L'épaisseur mesurée est comprise dans la plage de tolérance de spécification d'approvisionnement des tôles,
- (2) L'épaisseur mesurée est hors de la plage de tolérance de spécification d'approvisionnement des tôles.
- (3) Depuis la mise en service des ESPN de l'ELH, le mode de fonctionnement et la composition des solutions traitées ont très peu varié. La vitesse de corrosion est considérée constante. Pour des cas particuliers de variation significative, l'historique de fonctionnement serait pris en compte.
- (4) Situation rencontrée lors de la première campagne de mesure. L'accessibilité de la zone en contact avec la solution procédé s'avère impossible avec les moyens de mesure disponibles.

Figure 8 - Principes de détermination de la durée de fonctionnement des équipements ESPN. Le cas de cet équipement est encadré en rouge

E&P	Type Doc. Acti	ivité Cat.MT 1807 12	Révision B	REF
AREVA NC				REF

Page: 28 / 57

9.2.3.1.2 Epaisseur de conception

Aucune surépaisseur de corrosion n'a été prise à la conception. L'équipement a été vérifié à la tenue à la pression statique, au séisme et en fatigue-fluage.

Un calcul complémentaire a été réalisé (§9.1.5) pour justifier d'une épaisseur consommable de

Les épaisseurs limites sont donc :

- pour le fond supérieur ;
- pour la virole en partie haute ;
- pour la virole sous double enveloppe ;
- pour le fond inférieur sous double enveloppe.

Les tolérances m	inimales sur les	épaisseurs de	la virole	et du	fond	après	formage	étant
respectivement	pour les tô	les de la virole	e, et e	TATES.			E 1	
selon	en (vigueur lors	de l'appro	visionn	ement) pour	le fond	après
	seurs maximales d				respe	ectivem	ent	et
	sseurs minimales d	l'approvisionne	ement sont	donc			p p	our la
virole et p	oour le fond inférieu	ır sous double	enveloppe					

9.2.3.1.3 Vitesse de perte d'épaisseur

La durée minimale de fonctionnement de l'équipement par rapport au mécanisme de corrosion, peut être déterminée en considérant le phénomène de dégradation perte d'épaisseur.

La corrosion est un phénomène activé thermiquement, la perte d'épaisseur est d'autant plus importante que la température de la paroi de la zone considérée, en contact avec le fluide procédé, est élevée. Deux parties de l'équipement sont sous double enveloppe de chauffe : une partie de la virole et le fond. L'épaisseur disponible à la corrosion étant plus faible sur le fond, la ZIS (Zone Identifiée Sensible) considérée pour ce phénomène de dégradation est la paroi sous double enveloppe de chauffe au niveau du fond du pot.

o Détermination de la vitesse de corrosion à partir d'un équipement témoin

Dans l'impossibilité de réaliser les mesures US (cf. § 8.2), le conservatisme de l'équipement témoin choisi, le R2 (est démontré comme suit :

Les éléments de démonstration sont les suivants :

- Définition de la loi de corrosion pour le
- Applicabilité de cette loi aux équipements de la Hague, selon REX disponible
- Justification du conservatisme du témoin
 - o Comparaison des caractéristiques entre le témoin et le pot
 - o vitesse retenue pour le pot
- Vérification que cette Vcor est encadrée par les marges de dimensionnement / fabrication
- Gestes mis en œuvre pour le suivi en service du pot 2220 B 4017 de R1 (§9.3.2.3)

E&P	Type Doc. Activité Cal.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 29 / 57


1. Princ	ipe de fonction	nement : cf &	<u> </u>				
2. <u>Cons</u>	idération sur la	vitesse de c	corrosion				
température en laboratoir	mode de dég et la concentr e, par le CEA es 3 paramètre	ation des esp , permet de	èces corrosive	es:	. Une loi e	influents sont la empirique établie , en	
	Vcc	orr =	S m				
et ur d'estimer: • la vite	atif, en considé ne acidité esse de corros esse de corros	, pour	esse de corros une concenti	Approx.	Total Contract of the Contract	température de cette loi permet	
3. <u>Vérifi</u>	cation de cette	loi pour les e	équipements d	e la Haque pa	r retour d'expé	<u>rience</u>	
de paroi éva L'épaisseur démontage d	eur tubulaire d aluée résiduelle des de l'équipemen nominale soit	ont les tubes , ce qui p s tubes a é nt. A la mise en	s, sous flux the ermet d'amer eté mesurée a e en service e considérant l	ermique, foncti ler au minimum in 1990, il s'a la tolérance m	onnent avec u à l'ébull à series gissait de tub aximale d'app	en 2008 après	
4. Com	paraison entre	les colonnes	4140-30 de T	2 et de R2			
différent puis	nes. Il a été co	nstaté que le d'épaisseur	comportemen	t en corrosion	de ces deux e	épaisseurs dans équipements est r la colonne de	
Les résultats de mesures d'épaisseurs pour la colonne de de R2, sont présentés cidessous.							
ID zone	Campagne	Nb pts	Ep nominale	Ep moyenne mesurée mm	Ecart type mm	Ep min mesurée mm	
	Août 2014				Manager 1	100000	

ID zone	Campagne	Nb pts	Ep nominale	Ep moyenne mesurée mm	Ecart type mm	Ep min mesurée mm
٨	Août 2014					E = F
Α	Avril 2016	A COL				0 - 0
В	Août 2014	200		75		6 4
В	Avril 2016				//	100

E&P	Type Doc. Activité NT 100807	Cat.MT N° Ord	REF
AREVA NC			REF

Page: 30 / 57

Il est constaté que toutes les épaisseurs mesurées sont supérieures à l'épaisseur nominale sur R2 avec un fonctionnement en acidité moyenne de le et avec une température de alors que les pertes d'épaisseurs sur T2 sont significatives avec un fonctionnement en acidité moyenne de et avec une température de Considérant la loi empirique énoncée au point 2), ces résultats montrent que la concentration sur l'atelier T2 est significative alors qu'elle est négligeable sur l'atelier R2. Le risque corrosion sur l'atelier R2 est donc très faible. 5. Démonstration du conservatisme de la transposition de cette loi entre l'équipement témoin et le pot 2220 B - 4017 de R1 Le conservatisme de l'équipement témoin choisi, le R2 est démontré comme suit : Les deux équipements sont en Le témoin R2 a pour fonction de concentrer qui est ensuite renvoyé vers l'unité de dissolution de combustible 2220. Cet équipement contient de moyenne à selon les relevés réalisés entre 2001 et 2014 et est porté à ébullition. La température relevée en fonctionnement est en moyenne . Sur 2220. cet avant d'être transférée récupéré est dilué dans la cuve vers le pot de passage R1B-2220-4017. Le pot 2220-4017 fonctionne à une température de son rôle est de préchauffer avant envoi vers

équipements fonctionnent en dessous de la température d'ébullition de

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 31 / 57

Le tableau 1 suivant résume la comparaison des deux équipements concernant les 3 paramètres influant pour la corrosion du

	Témoin R2-4140-30	R1-2220B-4017 objet du CPAT3
Température	pour la solution	Température max de fonctionnement de la solution = Cette différence avec l'équipement témoin n'est pas prise en compte dans le raisonnement
	De façon pénalisante pour	eau de la cuve située entre le 20B-4017 n'est pas prise en compte. le pot, la teneur en est considérée re les deux équipements.
1000	moyenne	
tableau 1 : compar	aison des deux équipements concernant les 3 p	paramètres influant pour la corrosion du
et le pot de pa 4017 par rapp	la température plus faible et la dilution assage R1-2220-4017 conduisent à un port à Les condition de celles de R1-2220-4017 concerna	un risque de corrosion moindre pour R1-2220- s d'exploitation de sont donc
Les autres éq	uipements situés entre et fonctionnent à des température est le seul équipement représentatif	et R1-2220-4017 sont majoritairement en es en dessous de R1-2220-4017 et de ce fait, pour le pot 2220-4017.
6. Applica	ition de la loi pour le pot 2220-4017 d	<u>e R1B</u>
 la baiss la diffé la diffé la diluti 	de façon pénalisante, sans prise en c se d'acidité entre R2 () et R1I rence de perte d'épaisseur constatée rence de température entre R2 (on entre R2 (et R1B (2220- e corrosion équivalente aux pots de l'	B (2220-4017), entre les colonnes de T2 et R2 et R1B (2220-4017), 4017),

Le Tableau 2 présente la valeur de vitesse de perte d'épaisseur moyenne retenue pour la ZIS.

Zone	Vitesse de perte d'épaisseur moyenne (µm/an)	ur
Fond de cuve sous double enveloppe		1
T.11 A 184 1 4. 115	D4 0000D 4047	_

Tableau 2 : Vitesse de perte d'épaisseur moyenne retenue pour la ZIS – pot de passage R1 2220B-4017

Type Doc. Activité Cat.MT N° Ordre Révision
NT 100807 12 0096 B

REF

REF

AREVA NC

Page: 32 / 57

La vitesse de perte d'épaisseur est appliquée à partir de l'épaisseur minimale d'approvisionnement de la tôle du fond soit

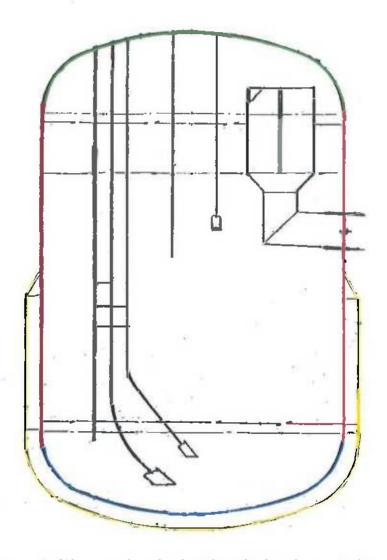
Considération sur le facteur fabrication du pot 2220-4017 de R1B

Il est précisé au §9.1.5 que la tenue en pression du pot de 2220B-4017 est validée en tenant compte d'une épaisseur consommable de sur la base de l'épaisseur nominale plan.

La durée minimale de fonctionnement est réalisé, pour une vitesse de corrosion enveloppe de les tolérances minimales sur les épaisseurs de la virole et du fond après formage de l'épaisseur nominale, selon en vigueur lors de l'approvisionnement).

Or dans le dossier de fabrication du pot 2220-4017 de R1B on retrouve les documents suivants :

- Le DER 1301 12 068 510 A: Identification matière relative au pot 2220.4017 C2 (1)
- Le DER 1301 12 068 306 A : PV de contrôle dimensionnel relatif au pot 2220-4017 C2 (2)
- Le DCF 1301 12 068 814 A : Procès-verbaux de contrôle par ultrasons pot de passage 4017⁽³⁾
- Le DCF 1301 12 068 606 A : Procès-verbaux de contrôle des microduretés superficielles pot de passage 4017⁽⁴⁾


Ces documents montrent que les points de contrôle à réception de l'équipement donnent :

Zone de l'équipement	Epaisseur nominale de commande	Epaisseur minimale mesurée	Références dans (1), (2), (3), (4)
virole (rouge)	45.95		Pièce Rep 4 dans ⁽¹⁾ Page 2 dans ⁽²⁾ Page 3, 4, 6 et 7 dans ⁽³⁾
fond supérieur (vert)	Section 1		Pièce Rep 1 dans ⁽¹⁾ Page 3 dans ⁽²⁾ Après usinage : page 3 dans ⁽³⁾
fond inférieur sous double enveloppe (bleu)			Pièce Rep 2 dans ⁽¹⁾ Page 3 dans ⁽²⁾ Après usinage : page 4 dans ⁽³⁾
Virole de double enveloppe de chauffe	More		Pièce Rep 5 dans ⁽¹⁾ Page 3 dans ⁽²⁾ Page 4 dans ⁽⁴⁾
fond inférieur de double enveloppe de chauffe (184116)			Pièce Rep 3 dans ⁽¹⁾ Page 3 dans ⁽²⁾ Après usinage : page 5 dans ⁽³⁾

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REE

Page: 33 / 57

Toutes les pièces ayant été mesurées à réception de l'équipement donnent des valeurs supérieures à l'épaisseur nominale de commande.

Comme pour la vitesse de corrosion prise en compte pour le calcul de la DMF de l'équipement, un conservatisme a été appliqué sur les marges subsistantes sur l'épaisseur consommable justifiée par le calcul.

Détermination de la Durée Minimale de Fonctionnement (DMF)

La DMF est calculée de manière conservative en tenant compte :

 Des tolérances d'approvisionnement de l'épaisseur de la paroi constitutive de la ZIS, en appliquant la vitesse de corrosion à l'épaisseur minimale. (Dans le cas où les PV de contrôles d'épaisseur ont été analysés, l'épaisseur minimale réellement mesurée est considérée)

 E&P
 Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B
 REF

Page: 34 / 57

 Des incertitudes de mesures d'épaisseurs lors des contrôles, en ajoutant à l'épaisseur limite l'incertitude de mesure.

Ainsi la DMF est calculée suivant la relation :

$$DMF = \frac{Min(E_{initiale})_{ZIS} - (E_{lim} + |\delta E|)}{\langle V_{corr} \rangle_{ZIS}} + t_0$$

Avec:

E_{lim} : Epaisseur limite, c'est-à-dire dans ce cas l'épaisseur minimale en tenue à la pression statique, vérifiée en fatigue-fluage, au séisme et en criticité

| δE | : Incertitude de mesure, dans ce cas

Min(E_{initiale})_{ZIS}: Epaisseur minimale initiale de la paroi de la ZIS

<V_{corr}>_{ZIS}: vitesse de corrosion moyenne dans la ZIS

to: Année de mise en service de l'équipement

o Détermination d'une DMF réduite, prise en compte d'une marge

A partir de l'estimation de la DMF de manière conservative, la DMF réduite est introduite par application d'une marge temporelle Ainsi:

La figure 9 suivante donne une illustration de ce calcul.

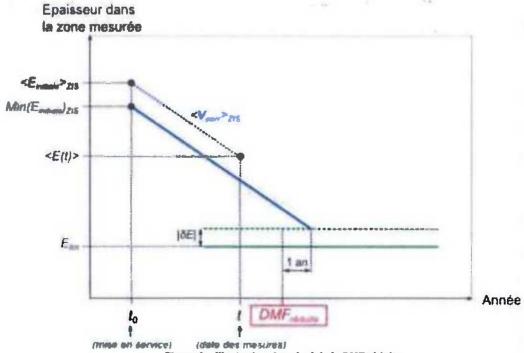


Figure 9 - Illustration du calcul de la DMF rédulte

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 35 / 57

De par cette méthodologie, la prise en compte du phénomène de dégradation de perte d'épaisseur est ainsi considérée comme intégrant les conservatismes appropriés.

9.2.3.1.4 Détermination d'une durée de vie de fonctionnement (DMF) réduite par rapport à la perte d'épaisseur

Le résultat du calcul de la durée minimale de fonctionnement réduite est présenté sur le Tableau 3.

Zone	DMF (année)	DMF ^{rédulte} (année)
Fond de cuve sous double enveloppe	5.7	

Tableau 3 : Durée minimale de fonctionnement réduite estimée à ce jour - pot de passage R1 2220B-4017

9.2.3.1.5 Estimation de la périodicité des campagnes de mesures d'épaisseur

La périodicité *P* des contrôles d'épaisseur est définie à partir de la variable *X*, elle-même définie à partir de la durée minimale de fonctionnement réduite.

$$X = \frac{DMF^{réduite} - date dernier contrôle}{2}$$

La périodicité P est définie de la manière suivante :

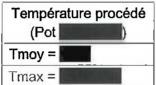
Le pot 2220B-4017 de R1 n'a pas fait l'objet de contrôle d'épaisseur depuis la mise en service car le geste est impossible à réaliser avec les moyens de contrôle disponibles à ce jour. L'estimation de X est effectuée en considérant la date d'aujourd'hui de manière enveloppe pour la date du dernier contrôle.

En se basant sur la DMFrédulte, on estime la variable X à :

La périodicité de campagne de mesure d'épaisseur pour le pot 2220B-4017 de l'atelier R1 serait donc de 120 mois.

Du fait de l'inaccessibilité du pot aux mesures d'épaisseurs et de l'utilisation d'un équipement témoins dans le cadre de sa surveillance, cette périodicité préconisée est réduite à 40 mois sur l'équipement témoin (cf § 11)

Les mesures sont réalisées sur un équipement similaire en §9.3.2.1.2.2).


E&P	Type Doc. Activité NT 10080	Cat.MT	Révision B	REF
AREVA NC				REI

Page: 36 / 57

9.2.4 Suivi de l'historique de fonctionnement

9.2.4.1 Suivi des températures de fonctionnement du pot de passage

Le tableau 4 suivant présente les valeurs moyennes et maximales de température de la solution dans le pot 2220B-4017 de R1 et de la vapeur saturante du caloporteur observées pendant les périodes de fonctionnement depuis 2008 :

Tableau 4 : sulvi températures du pot 2220B-4017 de R1 sur la période 2008-2015	
(*) Les quelques valeurs de températures maximales sont extrêmement ponctuelles (interva maintien inférieur et sont considérées sans changement de température caloporteur.	
L'envoi de la vapeur dans la double enveloppe des pots 2220B-4012/4017 est régie l'ouverture de vannes de régulation ; il n'y a pas de mesure de pression derrière ces vannes ni la pression ni la température caloporteur régnant au niveau des double-enveloppes ne pe être détermines.	donc
La seule mesure disponible est celle de la pression au niveau du vaporiseur contenu des pertes de charge dans les circuits caloporteurs (vanne de régulation plus ou rouverte et tuyauteries), celle-ci est forcément en dessous au niveau des double-enveloppes.	npte- noins
La valeur maximale observée au niveau du vaporiseur est de (ce qui correspond a température vapeur) dans la période 2014-2015. La valeur moyenne est de 5 qui correspond à une température vapeur La température du caloporteur est cal à partir de la pression mesurée du caloporteur (vapeur saturante).	(ce
1.2 Suivi de l'acidité dans le pot de passage	

9.2.4

de préparation acide en la la R 1.	_						
L'acidité dans la cuve de préparation présentée sur le graphique ci-dessous :		de F	R1 depuis	2000	jusqu'en	2015	est

Le suivi de l'acidité dans le pot de passage 2220B-4017 de R1 est réalisé en amont dans la cuve

Page: 37 / 57

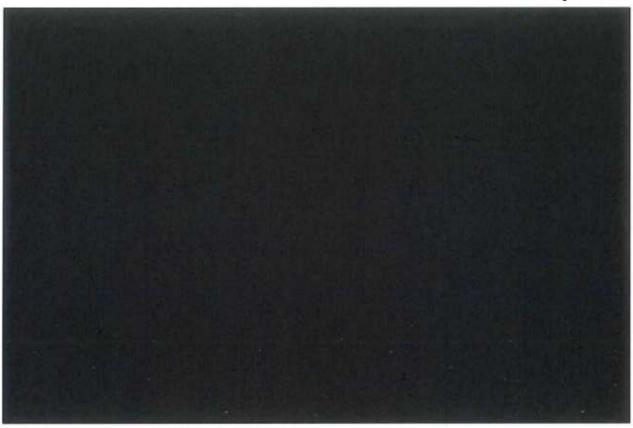


Figure 10 – Acidité dans la cuve de préparation acide de l'ateller R1 sur la période 2000-2015

S'agissant d'une cuve de préparation de la solution d'attaque, les résultats des prélèvements sont variables et dépendent de l'avancement de la préparation. La solution n'est transférée dans le pot de passage qu'après vérification de l'acidité après l'ajustage pour obtenir une acidité de

L'acidité de la solution d'attaque à destination du pot 2220B-4017 de R1 est de

9.2.4.3 Suivi des cycles en fatigue du pot passage

Comme il a été déterminé au § 9.1.5, le nombre	e de cycles admissibles est estimé à
Le fonctionnement de la boucle VA (a la l	est commun aux
De ce fait comme expliqué dans la note [16], il y a chauffe et refroidissement des	et pots 4012,4017.
L'équipement dimensionnant en fatigue étant le de l'historique des cycles en température par le pot de passage 2220B-4017.	est enveloppe des cycles en fatigue subis

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 38 / 57

Au vu des résultats obtenus pour le de R1 qui a été mis en service en 1994 [22], le phénomène de fissuration par fatigue n'est pas à craindre pour le pot de passage 2220B-4017

9.2.5 Niveau du facteur état de l'équipement

Au vu des éléments cités ci-dessus, et bien que les pertes d'épaisseurs estimées pour l'équipement ne remettent pas en cause la tenue de l'équipement durant la période de fonctionnement retenu pour l'usine de la Hague, le niveau du facteur état de l'équipement doit être défini, de façon conservative, comme étant un facteur de **Niveau 3** en l'absence de mesure d'épaisseur sur l'équipement.

9.3 DETERMINATION DU FACTEUR DEGRADATION

« Ce facteur évalue la sensibilité de l'équipement face aux dégradations potentielles, à l'égard des conditions d'exploitation et aux dispositions de suivi en service de l'équipement. Ce facteur doit être évalué mode de dégradation par mode de dégradation.

L'analyse peut être réalisée de manière itérative, en partant des inspections réellement effectuées sur l'équipement puis, si besoin en intégrant les mesures complémentaires.

La détermination de ce facteur se base sur :

- La probabilité d'apparition d'une dégradation dans les conditions d'exploitation
 - Faible: l'équipement n'est pas vulnérable au mode de dégradation étudié dans ses conditions de fonctionnement. La démonstration de l'absence de vulnérabilité est établie par sa conception,
 - Movenne : ce niveau est défini par l'exclusion des niveaux faibles et forts.
 - Forte: l'équipement est sensible à un mode de dégradation non pris en compte à la conception.
- La maitrise des conditions d'exploitations
 - Maitrisées: les conditions d'exploitation sont encadrées par des paramètres de fonctionnement précis et mesurables. Ceux-ci sont maitrisés et surveillés,
 - Non maitrisées : une des conditions précédentes n'est pas acquise ou la surveillance de ceux-ci n'est pas exhaustive.
- L'adéquation des inspections aux dégradations redoutées
 - Adéquate: les inspections réalisées sont performantes pour détecter les dégradations considérées, leur fréquence est adaptée à la cinétique du mode de dégradation considéré et elles sont réalisées sur la totalité de la partie de l'équipement soumise au mode de dégradation. Si la totalité de cette zone n'est pas contrôlée, pour être adéquates les inspections ne pourront exclure qu'une partie de la zone sous réserve que cette partie exclue ne soit pas une zone plus sensible au mode de dégradation. Leur aptitude à détecter la dégradation doit être établie,
 - Pas totalement adéquates : les inspections ne remplissent pas un des critères de performance, fréquence ou étendue précédemment explicités,
 - Absence : pas d'inspection ».

Le niveau du facteur de dégradation doit être défini comme suit :

E&P	Type Doc. Activité NT 100807	Cat.MT N° Ordre ' 12 0096	Révision	REF
AREVA NC				REF

Page: 39 / 57

	Inspec	tions adé	quates		pections ment adé		Absen	ice d'insp	ection
Probabilité d' apparition dégrada- tion Exploitation	Faible	Moyen	Fort	Faible	Moyen	Fort	Faible	Moyen	Fort
Maitrisée	1	1	2	1	3	3	2	3	3
Non-maîtrisée	1	2	2	2	3	3	3	3	3

9.3.1 Sensibilité de l'équipement face aux dégradations potentielles

L'identification des modes de dégradation est synthétisée dans le Tableau 5. Il précise la liste des modes de dégradation analysés et les éléments de justification permettant de faire apparaître les phénomènes de dégradation potentiels retenus pour l'analyse de la durabilité du pot de passage.

Mode de dégradation	Mode de dégradation Justification		
Vieillissement i	nduit par contrainte mécanique à basse températu	re	
Fatigue oligocyclique ou à grand nombre de cycles	Les mécanismes de fatigue (cycles T, P) sont pris en compte à la conception suivant un code de calcul dédié aux appareils à pression.	Oui	
Fatigue vibratoire	La fabrication des supportages suit des règles de conception dédiées issues du référentiel normatif et des standards AREVA	Non	
Dilatation thermique différentielle	Une seule nuance de matériaux est utilisée pour la fabrication de cet équipement. Les soudures réalisées sur cet équipement sont des soudures homogènes.	Non	
Concentrations de contraintes	Cet équipement a été conçu, calculé et fabriqué suivant un code de calcul spécifique aux appareils à pression, selon la règlementation en vigueur.	Non	
Pics locaux de pression	La conception et le fonctionnement suivent des règles dédiées (codes, normes, standards AREVA) permettant d'éviter ce type de phénomène.	Non	

E&P

 Type Doc.
 Activité
 Cat.MT
 N° Ordre
 Révision

 NT
 100807
 12
 0096
 B

REF

AREVA NC NI 100807 12 0096 B

REF

Page: 40 / 57

Mode de dégradation L'adéquation choix matériaux - environnement a été réalisée de manière à exclure ces modes de vieillissement. Ni les études expérimentales, ni les retours d'expériences n'ont mis en évidence de tels mécanismes pour équipement en			
Les températures vues par l'équipement et les éventuels cycles en température et pression sont trop faibles pour engendrer un vieillissement thermique.	Non		
Le mécanisme de fluage est pris en compte à la conception de façon concomitante à la fatigue suivant un code de calcul dédié aux appareils à pression.			
illissement induit par usure mécanique			
L'équipement ne contient pas de pièces mobiles en mouvement relatif les unes par rapport aux autres.	Non		
Les conditions de fonctionnement ne sont pas réunies pour entraîner ces phénomènes.	Non		
Les conditions de fonctionnement ne sont pas réunies pour entraîner ces phénomènes.	Non		
	L'adéquation choix matériaux - environnement a été réalisée de manière à exclure ces modes de vieillissement. Ni les études expérimentales, ni les retours d'expériences n'ont mis en évidence de tels mécanismes pour équipement en mécanismes pour équipement en les éventuels cycles en température et pression sont trop faibles pour engendrer un vieillissement thermique. Le mécanisme de fluage est pris en compte à la conception de façon concomitante à la fatigue suivant un code de calcul dédié aux appareils à pression. illissement induit par usure mécanique L'équipement ne contient pas de pièces mobiles en mouvement relatif les unes par rapport aux autres. Les conditions de fonctionnement ne sont pas réunies pour entraîner ces phénomènes.		

E&P

Type Doc. Activité Cat.MT N° Ordre Révision

NT 100807 12 0096 B

REF

AREVA NC

REF

Page: 41 / 57

Mode de dégradation	Justification	Mode de dégradation potentiel (Oui / Non)
Corrosion atmosphérique	La cellule contenant l'équipement est ventilée par un air filtré, la présence d'aérosols marins est négligeable. Le risque de condensation en cellule est possible suivant la température de la cellule et de l'équipement. Le retour d'expérience disponible issu de l'ensemble des observations vidéo en cellules zone 4 démontre l'efficacité de la filtration.	Non
Corrosion humide : généralisée	Le matériau en contact du fluide procédé (milieu est susceptible de subir un phénomène de corrosion de type dissolution uniforme de la surface du métal.	Oui
Corrosion humide : bimétallique	Un seul matériau est utilisé pour la fabrication de l'équipement. Il n'y a pas de couplage galvanique.	Non
Corrosion humide : aération différentielle	Il n'y a pas de surface dans l'équipement en contact avec deux milieux significativement différents pour induire un phénomène d'aération différentielle.	Non
Corrosion humide : piqûration	 Le fluide procédé n'a pas de caractère piqûrant vis-à-vis du Le caloporteur est constitué de vapeur d'eau Il n'y a aucun risque de piquration du au niveau de la boucle caloporteur. 	Non
Corrosion humide : caverneuse	 Le fluide procédé n'est pas de nature à engendrer une corrosion localisée vis-à-vis du Le caloporteur est constitué de vapeur d'eau. Il n'y a aucun risque de corrosion humide du au niveau de la boucle caloporteur. Il n'y a aucun risque de piquration du au niveau de la boucle caloporteur 	Non
Corrosion humide : intergranulaire	Le travaille dans son domaine passif. - Le caloporteur est constitué de vapeur d'eau. - Il n'y a aucun risque de corrosion intergranulaire du au niveau de la boucle caloporteur	Non
Corrosion humide : par courant vagabond	Les standards de conception permettent d'éviter ce type de phénomène	Non

E&P	Type Doc. Activité NT 10080	Cat.MT N° Ordre 07 12 0096	Révision B	REF
AREVA				REF

Page: 42 / 57

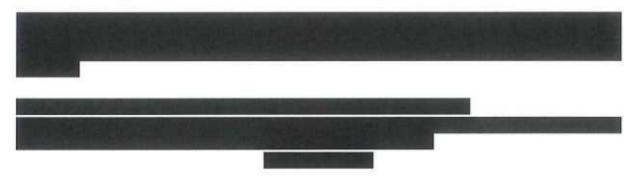
Mode de dégradation Justification				
ment induit par corrosion à haute température				
Les conditions de fonctionnement ne sont pas réunies pour entraîner ces phénomènes.	Non			
Vieillissement sous irradiation	i de ne ista			
Les études menées en réacteur sur les en montrent que ce flux neutronique devient significatif à partir d'environ Aucun équipement de La Hague ne rencontre ce niveau de flux neutronique.	Non			
	Les conditions de fonctionnement ne sont pas réunies pour entraîner ces phénomènes. Vieillissement sous irradiation Les études menées en réacteur sur les en montrent que ce flux neutronique devient significatif à partir d'environ Aucun équipement de La			

Tableau 5 : Liste des modes de dégradation

Les modes de dégradation retenus sont la corrosion par dissolution uniforme et généralisée et la fatigue-fluage. Les phénomènes de dégradation potentiels sont précisés dans le Tableau 6.

Mode de dégradation	Phénomène de dégradation potentiel
Fatigue-fluage	Fissuration au-delà d'un certain nombre de cycles
Corrosion par dissolution uniforme et généralisée	Perte d'épaisseur

Tableau 6 : Identification des modes de dégradation du pot de passage R1 2220B-4017


E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 43 / 57

9.3.2 Corrosion

9.3.2.1 Détermination de la probabilité d'apparition de la dégradation

9.3.2.1.1 Données expérimentales

Les zones potentiellement soumises à la corrosion sont identifiées dans le Tableau 7 ci-dessous, de la zone jugée la plus sensible à la moins sensible (sur la base des températures de dimensionnement et de l'environnement chimique).

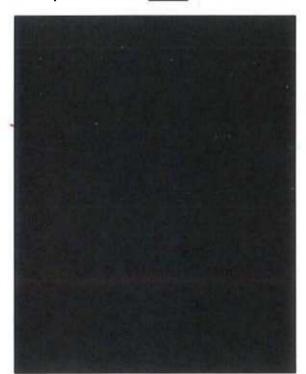
Zone	Matière Environnement		Condition de dimensionnement
Zone 1 : Fond inférieur et virole du pot sous double enveloppe de chauffe	Tôles – soudures	Int : Solution d'attaque acide Ext : Vapeur d'eau et condensats	
Zone 2 : Virole du pot au-dessous du niveau liquide	Tôles – soudures	Int : Solution d'attaque acide Ext : Atmosphère de la cellule	
Zone 3 : Virole du pot au-dessus du niveau liquide	Tôles – soudures	Int : Gaz et condensats Ext : Atmosphère de la cellule	
Zone 4 : Fond supérieur du pot	Tôles – soudures	Int : Gaz et condensats Ext : Atmosphère de la cellule	
Zone 5 : Paroi de la double enveloppe de chauffe	Tôles – soudures	Int : Vapeur d'eau et condensats Ext : Atmosphère de la cellule	

Tableau 7 - Sensibilité des zones à la corrosion

E&P	Type Doc. Activité NT 100807	Cat.MT N° Ordre 12 0096	REF
AREVA NC			REF

Page: 44 / 57

9.3.2.1.2 Retour d'expérience des inspections sur équipements similaires


Le	a été re	tenu pour la fabrication des trois pots de passages	
PER LA	et	ainsi que pour les trois pots de secours	
	et R1 2220B-401	7.	

Les pots de l'atelier T1 ont été mis en service en 1990 et ceux de l'atelier R1 en 1994.

9.3.2.1.2.1 Evaporateur de l'atelier T2 : ancien évaporateur

9.3.2.1.2.2 Evaporateur de l'atelier T2 : tuyauterie concentrats

Des mesures d'épaisseur réalisées en 2015 [21] sur la tuyauterie de concentrats (de T2 sont présentées ci-dessous. La température moyenne de la solution procédé est de la solution pro

Repère	Epaisseur	Epaisseur
point	nominale (mm)	mesurée (mm)

Figure 11 : Cartographie et relevé de mesures sur la tuyauterie de sortie des concentrats

Une perte d'épaisseur est constatée soit une vitesse de corrosion moyenne de depuis la mise en service en 1991

Page: 45 / 57

9.3.2.1.2.3 Colonne de l'atelier T2

6 campagnes de mesures ont été réalisées sur le bas de la virole de de T2 (cf. figure 12 ci-dessous). Les résultats des mesures d'épaisseur sont présentés dans le Tableau 8 ci-dessous.

La température moyenne de la solution procédé est de

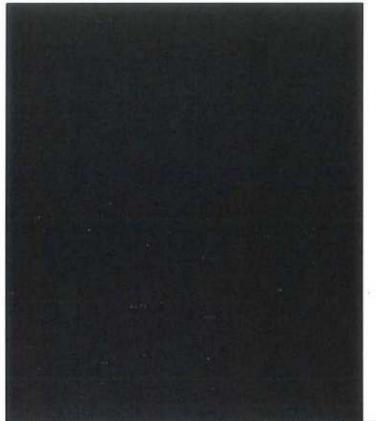


Figure 12 : Localisation de mesures d'épaisseur sur le bas de la virole de la de Ta

Campagne	1991	1998	1999	2002	2005	2007	2015
Référence			UNIER!				
Nombre de mesures							
Epaisseur moyenne (mm)	100						
Ecart-type (mm)							

Tableau 8 : Résultats des campagnes de mesures d'épaisseur - de T2

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		DEE

Page: 46 / 57



Figure 13 : Vitesse de corrosion de en partant de la moyenne entre tolérance max et tolérance min et prenant en compte l'ensemble des campagnes de mesures d'épaisseur.

Une perte d'épaisseur est constatée soit une vitesse de corrosion moyenne de depuis la mise en service en 1991

9.3.2.1.3 Probabilité d'apparition de la dégradation de type corrosion

Au vu des éléments cités ci - dessus et conformément aux critères du « Guide des conditions particulières d'application du Titre III du décret 99.1046 [1] aux Equipements Sous Pression Nucléaire » [3], la probabilité d'apparition de la dégradation de type corrosion est considérée comme « Fort ».

9.3.2.2 Détermination de la maîtrise des conditions d'exploitation

Un suivi en exploitation du pot de passage 2220B-4017 de R1 :

- de l'absence d'activité radiologique dans la boucle VA, permet de détecter toute fuite du compartiment nucléaire vers le compartiment sous pression,
- de la vérification du non déclenchement du seuil du capteur de niveau dans la lèchefrite permet de détecter une fuite du compartiment nucléaire vers la cellule.

Les paramètres suivis sont présentés dans le Tableau 9 et intégrés au POES de l'équipement [14].

Identification équipements ou seuil	Type de suivi
Analyse du bilan du suivi de l'acidité dans le pot (§9.2.4.2)	12 mois
Analyse du bilan du suivi de la température procédé dans le pot (§9.2.4.1)	12 mois
Mise en garde alarme haute activité dans la boucle caloporteur : référence seuil GMAO) (Seuil du	Alarme

 E&P
 Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B
 REF

Page: 47 / 57

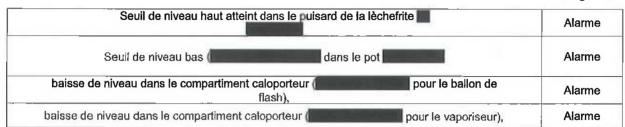


Tableau 9 – Paramètres suivis pour encadrer la corrosion

Au vu des éléments cités ci-dessus, les conditions d'exploitation associées à ce mode de dégradation sont considérées comme « Maîtrisées ».

9.3.2.3 Détermination de l'adéquation des inspections aux dégradations

Des dispositions particulières visant à suivre plus précisément la corrosion de l'équipement sont mises en place en plus de celles relevant du suivi conventionnel. Les dispositions particulières mises en œuvre sont présentées dans le Tableau 10 et intégrées au POES de l'équipement [14]

Exigences opérationnelles	Périodicité
Vérification visuelle de la surface externe du pot de passage	12 mois
Mesures d'épaisseur sur équipement similaire (40 mois

Tableau 10 – Disposition particulières mises en œuvre pour encadrer la corrosion

Les mesures d'épaisseurs, comme précisées au § 9.2.3.1.3 et au § 9.3.2.1.2.1 sur un équipement similaire (et acidité), ainsi que la vérification visuelle de la surface externe du pot de passage permettent d'encadrer la corrosion.

La périodicité des dispositions particulières, définie dans le POES, se fait en accord avec la vitesse des phénomènes de dégradation identifiés de l'équipement

Au vu des éléments cités ci – dessus, l'adéquation des inspections à ce type de dégradation est évaluée comme étant «Pas totalement adéquate».

9.3.2.4 Niveau du facteur de dégradation

Les niveaux des facteurs à considérer pour l'analyse du niveau du facteur de dégradation en fonction des modes de dégradation considérés sont :

- Corrosion
 - Probabilité de l'apparition de la dégradation (voir § 9.3.2.1.3) : Forte
 - Niveau de maîtrise des conditions d'exploitation (voir § 9.3.2.2): Maitrisées
 - Adéquation des inspections aux dégradations (voir § 9.3.2.3) : Pas totalement adéquate

E&P Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B

Page: 48 / 57

	Inspec	tions adé	quates	Inspections pas totalement adéquates			Absence d'inspection		
Probabilité d' apparition dégrada- tion Exploitation	Faible	Moyen	Fort	Faible	Moyen	Fort	Faible	Moyen	Fort
Maitrisée	1	1	2	1	3	3	2	3	3
Non-maîtrisée	1	2	2	2	3	3	3	3	3

Tableau 11 - Matrice de niveau du facteur corrosion

Après analyse de la matrice de détermination du facteur dégradation, le niveau de ce facteur est :

o Corrosion: Niveau 3.

9.3.3 Fatigue

9.3.3.1 Détermination de la probabilité d'apparition de la dégradation

L'équipement de par ses conditions d'exploitation est soumis à des cycles de pression / température et donc à un phénomène de fatigue.

Lors de la conception du pot de passage 2220B-4017 de R1, aucune note de calcul en fatigue n'a été réalisée. Un complément de calcul donc été effectué [13].

Les résultats de ces calculs attestent du bon dimensionnement de l'équipement au mode de dégradation considéré.

Au vu des éléments cités ci-dessus, la probabilité d'apparition de la dégradation est considérée comme « Faible ».

9.3.3.2 Détermination de la maîtrise des conditions d'exploitation

Un suivi en exploitation au niveau du pot de passage 2220B-4017 de R1 des paramètres pression / température de l'équipement permet d'encadrer ce mode de dégradation.

Les paramètres suivis sont présentés dans le Tableau 12 et intégrés au POES de l'équipement [14].

Identification équipements ou seuil	Type de suivi
Suivi et enregistrement de la température du liquide dans le pot de passage 2220B-4017	Relevé valeur
Suivi et enregistrement de la pression dans le	Relevé valeur

Tableau 12 - Paramètres suivis pour encadrer la fatigue

Une analyse de l'historique des cycles thermique et pression a été constituée [16].

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 49 / 57

L'exploitation de cet historique permet de conforter les marges restantes pour l'exploitation du pot de passage 2220B-4017 de l'atelier R1 (voir § 9.2.4.3).

L'analyse des cycles faite et le suivi en exploitation permet donc de considérer que les conditions d'exploitation liées à la fatigue de l'équipement sont « Maitrisées ».

9.3.3.3 Détermination de l'adéquation des inspections aux dégradations

Concernant la fatigue, un suivi des cycles thermiques et pression effectué au travers de la surveillance de la température et de la pression avec une analyse annuelle justifie que le domaine d'apparition de la dégradation est maîtrisé.

9.3.3.3.1 Adéquation des inspections liées à la fatigue

Des dispositions particulières visant à suivre plus précisément la fatigue de l'équipement sont mises en place.

Ces dispositions particulières sont présentées dans le Tableau 13 et intégrées au POES de l'équipement [14] :

Exigences opérationnelles	Périodicité 👊
Vérification visuelle de la surface externe du pot de passage	12 mois
Bilan annuel des cycles réels en pression et en température	12 mois

Tableau 13 - Dispositions particulières mises en œuvre pour encadrer la fatigue

Les conditions de température et de pression sont déjà suivies et analysées (voir § 9.2.4). Le suivi et le bilan annuel des cycles thermique et pression va permettre de connaître les marges restantes pour l'exploitation de l'équipement.

Le visuel de la surface externe du pot de passage permet de détecter des fissurations.

La périodicité des dispositions particulières, définie dans le POES, se fait en accord avec la cinétique des modes de dégradation identifiés de l'équipement.

Au vu des éléments cités ci-dessus et conformément aux critères du « Guide des conditions particulières d'application du Titre III du décret 99.1046 [1] aux Equipements Sous Pression Nucléaire » [3], l'adéquation des inspections à ce type de dégradation est évaluée comme étant « Adéquate ».

9.3.3.4 Niveau du facteur de dégradation

Les niveaux des facteurs à considérer pour l'analyse du niveau du facteur de dégradation en fonction des modes de dégradation considérés sont :

- Fatigue
 - Probabilité de l'apparition de la dégradation (voir § 9.3.3.1) : Faible
 - Niveau de maîtrise des conditions d'exploitation (voir § 9.3.3.2) : Maitrisées
 - Adéquation des inspections aux dégradations (voir § 9.3.3.3.1) : Adéquate

Type Doc. Activité Cat.MT N° Ordre Révision
NT 100807 12 0096 B

REF

AREVA
NC

Page: 50 / 57

	Inspections adéquates			Inspections pas totalement adéquates			Absence d'inspection		
Probabilité d' apparition degrada tion Exploitation	Faible	Moyen	Fort	Faible	Moyen	Fort	Faible	Moyen	Fort
Maitrisée	1	1	2	1	3	3	2	3	3
Non-maîtrisée	1	2	2	2	3	3	3	3	3

Tableau 14 - Matrice de niveau du facteur fatigue

Après analyse de la matrice de détermination du facteur dégradation, le niveau de ce facteur est :

o Fatique: Niveau 1.

9.3.4 Facteur Global de dégradation de sécurité de l'équipement

Après analyse de tous les facteurs de dégradation de l'équipement, le niveau global de dégradation attribuable à l'équipement est le plus important des niveaux des facteurs identifiés.

Pour le pot de passage 2220B-4017 de R1, on a :

- o Corrosion (voir § 9.3.2.4): Niveau 3.
- o Fatigue (voir § 9.3.3.4): Niveau 1.

Après analyse de tous les facteurs de dégradation de l'équipement, le niveau global de dégradation attribuable à l'équipement est **Niveau 3.**

9.4 DETERMINATION DU NIVEAU DE SECURITE DE L'ESPN

Pour déterminer le niveau de sécurité, on retient le niveau le plus pénalisant obtenu parmi les facteurs ci-dessous.

Les niveaux des facteurs étudiés sont :

- Facteur Fabrication (voir § 9.1.6): Niveau 1.
- Facteur Etat (voir § 9.2.5): Niveau 3.
- Facteur Dégradation (voir § 9.3.4) : Niveau 3.

Le niveau de sécurité retenu pour l'ESPN suite à l'analyse des différents facteurs est le **Niveau 3** « **Risque de défaillance fort »**.

E&P	NT	c. Activité 100807	N° Ordre	Révision	REF
AREVA NC					REF

Page: 51 / 57

Le niveau de sécurité retenu pour l'ESPN suite à l'analyse des différents facteurs est le **Niveau 3** « **Risque de défaillance fort**».

De manière conservative la méthodologie [10], en l'absence de mesure d'épaisseur pour l'ensemble des zones jugées sensibles, conduit à positionner l'équipement en risque de défaillance fort.

Il est toutefois noté (cf § 9.2.3.1) que les pertes d'épaisseurs attendues sur cet équipement sont négligeables et ne remettent pas en cause la durée de vie de l'équipement.

10 EVALUATION DES CONSEQUENCES DE LA DEFAILLANCE DE L'ESPN

Les conséquences de la défaillance du pot de passage 2220B-4017 de R1 sur les intérêts protégés mentionnés à l'article L.593-1 du Code de l'Environnement sont évaluées dans l'analyse de sûreté référencée [5].

Pour mémoire, les intérêts protégés sont :

- la sécurité, la santé et la salubrité publiques ;
- la protection de la nature et de l'environnement.

10.1 RETOUR D'EXPERIENCE (REX)

Aucun REX notable pour des équipements similaires n'a été constaté.

10.2 RAPPEL DES CARACTERISTIQUES DE L'ESPN

Classement de l'ESPN:

Le pot de passage 2220B-4017 de l'atelier R1 est un ESPN de niveau N2 et de catégorie II. Le classement retenu est justifié dans l'analyse de sûreté dite de justification du classement en niveau de l'ESPN relevant des annexes 5 et 6 de l'arrêté en référence [2].

Les autres caractéristiques techniques de l'ESPN sont décrites aux paragraphes § 5 et 6 de la présente note.

Environnement de l'ESPN:

La prévention contre les risques de dispersion de matières radioactives est assurée par l'organisation des ateliers en systèmes de confinement selon les principes développés au paragraphe 3 du chapitre 4 du RPS UP2-800.

Un premier système de confinement est conçu de manière à éviter une dissémination de la radioactivité dans les zones de circulation du personnel ou dans l'environnement.

Il est composé de deux barrières :

E&P	NT	. Activité 100807	N° Ordre	Révision B	REF
AREVA NC					REF

Page: 52 / 57

- o une première barrière statique constituée par les appareils procédés et les enveloppes de conditionnement en contact direct avec les matières radioactives,
- o une seconde barrière statique est constituée par les parois des cellules (zone 4) et celles des équipements (gaines de ventilation jusqu'au premier étage de filtration) qui en assurent la continuité. Elle a pour but :
 - de limiter la dissémination de matière radioactive en cas de défaillance de la première barrière,
 - d'assurer la protection contre l'irradiation du personnel,
 - de permettre les opérations nécessaires pour revenir à la situation normale.

Le confinement statique ainsi obtenu est complété par un confinement dynamique par ventilation forcée :

- le système de ventilation associé à la première barrière de confinement permet de maintenir les appareils du procédé en dépression par rapport aux cellules les contenant. Un sens d'air préférentiel est ainsi créé de ces cellules vers les appareils procédé, à travers les fuites éventuelles de la première barrière, limitant la dispersion de matière radioactive,
- o le système de ventilation associé à la deuxième barrière de confinement, permet de maintenir une dépression entre le premier système de confinement et le second système de confinement, de manière à limiter une éventuelle dispersion de matière radioactive en dehors de ce premier système de confinement.

Un deuxième système de confinement est prévu en tout point où la continuité du premier système de confinement ne peut être totalement garantie (i.e. cas des traversées non classées non-disséminantes). Ce deuxième système est constitué d'au moins une barrière assurant une protection supplémentaire de l'environnement contre la dispersion des matières radioactives.

D'une manière générale, les salles situées autour des cellules actives font partie du deuxième système de confinement.

10.3 CONSEQUENCES SUR LE PERSONNEL

Les conséquences de la défaillance de l'équipement sur les travailleurs sont appréciées en prenant en compte l'environnement de l'équipement.

Les conséquences sur les travailleurs suite à une défaillance de l'équipement sont analysées à un niveau faible dans les scénarios du document de référence [5].

Scénario 1:

La présence de personnel en cellule étant exclue (la zone 4 n'est pas accessible au personnel), aucune conséquence sur le personnel n'est à envisager, y compris dans les locaux adjacents.

Scénario 2:

En l'absence de surpression susceptible de remettre en cause l'intégrité du pot, la défaillance est sans conséquence directe sur le personnel pouvant être présent dans les locaux adjacents. Une contamination du circuit caloporteur ou du circuit d'eau réfrigérée et le risque résultant d'exposition externe du personnel peuvent nécessiter des dispositions concertées entre l'exploitant et les équipes radioprotection pour limiter l'accès aux locaux présentant un risque radiologique.

E&P	Type Doc. Activité Cat.MT N° Ordre Rév. NT 100807 12 0096 E	REF
AREVA NC		REF

Page: 53 / 57

Les opérateurs sont équipés d'un Dosicard possédant une alarme en cas de risque radiologique.

Scénario 3:

La présence de personnel en cellule est exclue.

Parmi les locaux accessibles au personnel en fonctionnement normal, ceux ou sont présents les filtres et les conduits sont impactés par cette défaillance en raison de l'augmentation de l'activité entraînée dans ces filtres et conduits.

Le DED majorant à proximité des caissons filtres est estimé à pour T1, celui à proximité d'un conduit de ventilation à

Les dispositions prises par l'exploitant et le service de radioprotection pour limiter l'accès aux locaux présentant un risque radiologique permettent d'assurer la protection du personnel du risque d'exposition résultant de la défaillance.

De façon plus générale, les différents dispositifs de détection radiologique (CRP) des locaux accessibles du bâtiment R1/T1 permettent l'évacuation rapide du personnel présent en cas de risque radiologique.

Les opérateurs sont équipés d'un Dosicard possédant une alarme en cas de risque radiologique.

Scénario 4:

L'évaluation du DED dans le local des filtres du DNF et au voisinage des conduits de ventilation est estimée de la même façon que celle présentée pour le scénario 3 en considérant un rejet immédiat supplémentaire dû à la vapeur générée et extraite par le réseau de ventilation bâtiment. Il est considéré que la fuite d'eau réfrigérée vers la lèchefrite de la cellule ne constitue pas un facteur d'entrainement de contamination aggravant vis-à-vis de la fuite de solution de dissolution en cellule et de l'entrainement par la vapeur du réseau caloporteur.

Pour le scénario 4, le DED majorant à proximité des caissons filtres est estimé pour R1B et à pour R

Les dispositions prises par l'exploitant et le service de radioprotection pour limiter l'accès aux locaux présentant un risque radiologique permettent d'assurer la protection du personnel face au risque d'exposition externe résultant de la défaillance.

Les différents dispositifs de détection radiologique (CRP) des locaux accessibles du bâtiment R1/T1 permettent l'évacuation rapide du personnel présent en cas de risque radiologique.

Les opérateurs sont équipés d'un Dosicard possédant une alarme en cas de risque radiologique.

10.4 CONSEQUENCES SUR L'ENVIRONNEMENT

Les conséquences de la défaillance de l'équipement sur l'environnement et le public sont appréciées en prenant en compte l'environnement de l'équipement.

Les conséquences sur l'environnement suite à une défaillance de l'équipement sont analysées dans le document de référence [5].

Aucun des scénarios étudiés n'entraine d'impact significatif sur le personnel, le public ou l'environnement ni ne conduit à un impact supérieur à l'impact annuel induit par les rejets nominaux.

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 54 / 57

Les scénarios hautement pénalisants sont les scénarios 3 et 4.

- Perte de confinement du compartiment procédé dans la cellule
- Perte concomitante du circuit caloporteur ou refroidissement et du compartiment procédé dans la cellule

Pour le scénario 3, l'impact à l'environnement est estimé en considérant la totalité de la solution radioactive déversée dans la lèchefrite de la cellule.

L'impact maximal serait de (nourrisson à Digulleville).

Pour le scénario 4, l'impact à l'environnement est estimé en considérant la totalité de la solution radioactive déversée dans la lèchefrite de la cellule. Cet impact est également évalué en ajoutant un rejet immédiat supplémentaire dû à la vapeur générée et extraite par le réseau de ventilation bâtiment.

L'impact maximal serait, pour le scénario 4, de _____ (nourrisson à Digulleville).

Les mécanismes d'endommagement conduisant à de tels scénarios n'ont à ce jour jamais été observés sur le site.

11 PERIMETRE DE LA DEMANDE D'AMENAGEMENT D'APPLICATION DU TITRE III POUR LE SUIVI EN SERVICE

Dans l'impossibilité d'effectuer la totalité des gestes réglementaires requis par les annexes 5 et 6 de l'arrête ESPN (inspection visuelle externe partielle), les dispositions particulières envisagées, objet d'une demande d'aménagement, en application de l'article 3 de l'arrêté 99.1046 du 13/12/99[1], sont explicités dans les tableaux ci-dessous avec leur périodicité et modalité respectives de mise en œuvre.

L'analyse de l'équivalence du niveau de sécurité par rapport à celui qui serait établi par application des mesures réglementaires ESPN ne peut être réalisée sur la base d'une méthode générique telle que la méthode de cotation en annexe du courrier du groupe inter-exploitant [15]. En effet, le niveau de sécurité retenu pour l'ESPN 2220-4017 de l'atelier R1B étant le **Niveau 3 « Risque de défaillance fort ».**

De manière conservative la méthodologie [10], en l'absence de mesure d'épaisseur pour l'ensemble des zones jugées sensibles, conduit à positionner l'équipement en risque de défaillance fort.

Il est toutefois noté (cf § 9.2.3) que les pertes d'épaisseurs attendues sur cet équipement sont faibles et ne remettent pas en cause la durée de vie de l'équipement.

Pour ces raisons, et au-delà de la requalification réglementaire positionnée tous les 60 mois, il est mis en œuvre un plan de surveillance renforcé.

E&P

Type Doc. Activité Cat.MT N° Ordre Révision
NT 100807 12 0096 B

REF

AREVA NC

REF

Page: 55 / 57

-	Inspection réglementa	ire	Faisabilité
Type de suivi	Réglementation	Périodicité	(oui/non/ partielle)
Inspection	Vérification intérieure et extérieure de l'équipement Arrêté [1]- Annexe 5 - §3	40 mois [1]	Partielle
e .	Vérification de l'adéquation documentaire Arrêté [1]- Annexe 6 - §2	60 mois (1)	Oui
Requalification périodique	Vérification intérieure et extérieure de l'équipement Arrêté [1]- Annexe 6 - §2	60 mois [1]	Partielle
XX _	Epreuve Hydraulique Arrêté [1]- Annexe 6 - §2	60 mois [1]	Oui

Faisabilité des dispositions réglementaires sur l'équipement 2220B-4017 de R1

Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 В

REF

REF

AREVA NC

Page: 56 / 57

Disposition	ons particulières	Périodicité proposée
	Vérification visuelle extérieure partielle de l'équipement	12 mois
	Analyse des mesures d'épaisseur sur équipement témoins *	40 mols [14]
Gestes compensatoires	Bilan des cycles réels en température (bilan dissolveur).	12 mois [14]
	Analyse du bilan de sulvi des températures du fluide procédé	12 mois [14]
Wild Controlled	Analyse du bilan du sulvi des caractéristiques physico-chimiques du liquide procédé (acidité)	12 mois [14]
	Vérification de l'adéquation documentaire Arrêté [1]- Annexe 6 - §2	60 mois [14]
Requalification périodique	Vérification visuelle extérieure partielle de l'équipement	60 mois
	Analyse des mesures d'épalsseur sur équipement témoins *	60 mois [1 4]
	Epreuve Hydraulique Arrêté [1]- Annexe 6 - §2	60 mois [14]

Dispositions complémentaires en nature et/ou en périodicité proposé sur l'équipement 2220B-4017 de R1

* Les mesures d'épaisseurs seront réalisées sur l'équi ement témoin, à savoir l'éva orateur de R2 (cf §9.2.3.1.3). Toute évolution de la vitesse de perte d'épaisseur prévue sur cet équipement fera l'objet d'une analyse sur le pot 2220-4017 de l'atelier R1B

E&P	Type Doc. Activité Cat.MT N° Ordre Révision NT 100807 12 0096 B	REF
AREVA NC		REF

Page: 57 / 57

L'intégration de ces dispositions dans le POES sera révisée selon les compléments et validation apportées par l'obtention de la dérogation.

Conformément à la réglementation ESPN, l'OIHA intervient dans le cadre de l'Inspection de requalification périodique de l'équipement.

A l'issue des Opérations de requalification périodique, un procès-verbal est rédigé et signé par le représentant de l'OIHA.

Ce procès-verbal attestera que les opérations de requalification périodique mentionnées dans cette présente note ont bien été réalisées. Le procès-verbal sera accompagné des comptes rendus détaillés des opérations effectuées dans le cadre de cette inspection. Ce procès-verbal ainsi que les documents associés sont intégrés au Dossier d'Exploitation (DEX) de l'équipement.

De plus, si le procès-verbal fait état de constatations, celles-ci devront être intégrées au POES de l'équipement. Le POES de l'équipement sera donc révisé en conséquence vis à vis des constatations émises.